
" AD-A192 226 ADA (TRADE NAME) COMPILER VALIDATION SUMMARY REPORT: 1/1
VERDIX CORPORATION V (U) ADA JOINT PROGRAM OFFICE
ARLINGTON VA 19 JUN 87

UNCLASSIFIED F/G 12/5 NLEEEIIEEEEEIIEI
EllEEEllllEllE
EhEllEllEEE

r m _o m mm



L -L

owii IS ow N
liiiNo I~ooll %0nil %

'pr
-is. 1 * i.

,r § 8



AVF Control Number: AVF-VSR-102.1087
87-04-09-VRX

N :  N

AdaD COMPILER
VALIDATION SUMMARY REPORT:

Verdix Corporation
VAda-010-03315, Version 5.5

MicroVAX II host

iSBC 386/20P Intel target

Completion of On-Site Testing:
19 June 1987

DTIC
Prepared By: S EL.ECTE

Ada Validation Facility
ASD/SCOL Ilk, MAR 2 8 1988

Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

.Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

wZ-.-.-" *I---" ,. .. . ... I w [ , % "

~ ~ ~88 3 2



SECURITYUNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETEING FOR-M

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED'
Ada Compiler Validation Summary Report: Verdix 19 June '87 to 19 June'88
Corp. VAda-010-03315, Ver.5.5 MicroVAX II host
iSBC 386/20P Intel target 6. PERFORMING ORG. REPORT NUMBER

7 AUTH R(s 8. CONTRACT OR GRANT NUMBERs)
Wrigh - atterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Wright-Patterson AFB OH 45433-6503 AREA & WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 June '87
United States De partment of Defense 3. NUMBER OF PAGES
Washington, DC 20301-3081ASD/SIOL 35 p

14. MONITORING AGENCY NAME & ADORESS(If different from ControllingOffice) 15. SECURITY CLASS (of this report)

% Wright-Patterson AFB OH 45433-6503. UNCLASSIFIED
15a. R48FICATION/DOWNGRADING

___-_N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.
[,'. ,

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

1119. K EYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
% Compiler Validation Capability, ACVC, Validation Testing, Ada
% Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-

1815A, Ada Joint Program Office, AJPO

. -

" -20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

% See Attached.

.1%

DD "14K 1473 EDITION OF I NOV 65 IS OBSULETf
I JAN 13 S/N 0102-LF-014 6601 UNCLASSIFIED

-tCV, Vi CLASSIFICATION OF THIS PAGE (When Data Entered)

% %'+,,

•~~ %.- %e %tahd

DO , 43 DTO F O 5 0sOS T



'5
-5++ +I+I++++++

,"'+ 4
,'5"+PaeNI omhr

-Np•
'5+

5* 5.'+++++.+++++

-v

S.

%.

OM

S..

+ +



Ada® Compiler Validation Summary Report:

Compiler Name: VAda-010-03315, Version 5.5

Host: Target:
MicroVAX II iSBC 386/20P Intel
under MicroVMS, Version 4.4 (bare machine)

using file-server support from the host

Testing Completed 19 June 1987 Using ACVC 1.8

-%is ,)eport has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
ASD/SCOL
Wright-Patterson AFB OH 454 3 3-6503

copy
' '/ "cOPY

kda Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses

VA Accession For

NTIS GRAJl

DTIC T.B -

Unju.'- d F

Ada 4'oint Program Office
Virginia L. Castor By
Director Distribatlor/
Department of Defense Ava11nbUly C1,;1
Washington DC Avai-arAscr -

Dist Spku al

tAda is a registered trademark of the United States Government
(Ada Joint Program Office).

S.



EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the VAda-010-03315, Version 5.5, using
Version 1.8 of the Ada T Compiler Validation Capability (ACVC). The
VAda-010-03315 is hosted on a MicroVAX II operating under MicroVMS, Version
4.4. Programs processed by this compiler may be executed on an iSBC

386/20P Intc' , having no operating system.

On-site testing was performed 12 June 1987 through 19 June 1987 at Verdix
>ornoration Western Operations, Aloha OR, under the direction of the Ada
lalJation Facility (AVF), according to Ada Validation Organization (AVO)
polic ''* and procedures. The AVF identified 2210 of the 2399 tests in ACVC

Version 1.8 to be processed during on-site testing of the compiler. The 19
.. tests withdrawn at the time of validation testing, as well as the 170

executable tests that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After the 2210 tests
were processed, results for Class A, C, D, and E tests were examined for
correct execution. Compilation listings for Class B tests were analyzed

*for correct diagnosis of syntax and semantic errors. Compilation and link
r-3sults of Class L tests were analyzed for correct detection of errors.
.There were nineteen of the processed tests determined to be inapplicable.

.rne rem Ling 2191 tests were passed.

The re . Lts of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passo,! 102 252 334 244 161 97 139 261 130 32 218 221 2191

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 0 1 0 0 0 12 189

N? Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

J TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

LA

')Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

,6

e 1%

0%



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

..

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT . . .. 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT . .C.O...E1-2
1.3 REFERENCES .I................... 1-3
1.4 DEFINITION OF TERMS ...... .............. .1-3
1.5 ACVC TEST CLASSES ....... ................ 1-4

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED ...... ............... .. 2-1
2.2 IMPLEMENTATION CHARACTERISTICS .... .......... .2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS ........ ................... .. 3-1
-- 3.2 SUMMARY OF TEST RESULTS BY CLASS ......... 3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER ........... .3-2
.4 WITHDRAWN TESTS ............... 3-2

3.3 INAPPLICABLE TESTS ....... ................ .. 3-2
3.6 SPLIT TESTS .. 3-3
3.7 ADDITIONAL TESTING INFORMATION .......... 3-3

3.7.1 Prevalidation ....... ................. .. 3-4
t ' 7.2 Test Method ....... .................. .. 3-4

3.7.3 Test Site ........ ................... .. 3-5

APPENDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

* APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

4,

4,

.,. ,' ."' ."" ."' - ' .' " +" - . - '' ." '," . . - - ''" - " ," . " " " % ': ,, < ,'; "

., .. .... ,.- ...... ,+.. .... ,,....,,... .. .-+. .. +. ....- - +, j ., ,+, .,, ,+-+.,+



J,

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a

specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
-his report explains all technical terms used within it and thoroughly

!eports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented

acnorditi. to the Ada Standard, and any implementation-dependent features
cs 'r, m to the requirements of the Ada Standard. The Ada Standard

must i i riaplc:mented in tts entirety, and nothing can be implemented that is
not ,,t Jri Standard.

Even though all validated Ada compilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the

-aximum ength of identifiers or the maximum values of integer types.

Other IdLfferences between compilers result from characteristics of

"U )articu,.-r operating systems, hardware, or implementation strategies. All
-'f the dependencies observed during the process of testing this compiler

are given in this report.

U... The information in this report is derived from the test results produced

4/.i during validation testing. The validation process includes submitting a

suite of standardized tests, the ACVC, as inputs to an Ada compiler and

* evaluating the results.0 The purpose of validating is to ensure conformity

-i of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is

implementation dependent but permitted by the Ada Standard. Six classes of

tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

vU.,

U-,

.-,,"

4.



[F w .J c.r. W t V wrrrvrzwrr -- n . rJ r v. r. = r .. ,- - .- r .r L '* 7' Sk. 7 - - - P - - - -

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada StandardII To attempt to identify any unsupported language constructs
required by the Ada Standard

ro leter'mine iThat the implementation-.dependnt behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
12 Jun.e 1987 through 19 June 1987 at Verdix Corporation Western Operations,

-)ha. 0R.

'p-

"  ISE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
-make full and free public disclosure of this report. In the United States,
thi.3 ;s provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

hne organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities

to the Ada Standard other than those presented. Copies of this report are

available to the public from:

_ Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)I; Washington DC 20301-3081

. or from:

Ada Validation Facility
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

K., 1-2

*i;... a,.



INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

NI' Ada Validation Organization

institute fozr Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

: ' :?ERENCES

. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983.

-. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
-, Inc., December 1984.

1.4 DEFINITION OF TERMS

"VC The Ada Compiler Validation Capability. A set of programs

that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
-the AVF is responsible for conducting compiler validations

according to established policies and procedures.

' AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for
. compiler validations.

Compiler A processor for the Ada language. In the context of this

-. report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

-O 1-3



r *I . -r. -WqW- I -- W.~~

INTRODUCTION

Inapplicable A test that uses features of' the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

0 2Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the tecis used to designate a
single test, which may comprise one or more files.

Withadr~wa A test found to be incorrect and not used to check conformity
Zest to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

A, 'CV(, EST CLASSES

c~t'~>:yto the A-1a Standard is measured using the ACVC. The ACVC

;ontains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are uso'd to report their results duri~ng
execution. Class B tests are expected to produce compilation errors.
" lass L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time ana the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,

- - FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1 -4

SdK



1%*

) INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED Message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class

test is passed by a compiler if it is cownpl].ee successfully and executes
*uproduce a PASSED message, or if it is rejected by the compiler for an

ioiwable reason.

Class L tests check that incomplete or illegal Ada programs involving

multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any

declarations in the main program or any units referenced by the main
program are elaborated.

TN,- iibrai'y units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that

would circumvent a test objective. The procedure CHECKFILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14i of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined

to verify that the units are operating correctly. If these units are not

operating correctly, then the validation is not attempted.

The text of the tests in the AC'JC follow conventions that are intended to

ensure that the tests are reasonably portable without modification. For
* example, the tests make use of only the basic set of 55 characters, contain

lnes with a maximum length of 72 characters, use small numeric values, and
pace features that may not be supported by all implementations in separate

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
ilegal file name. A list of the values used for this validation is

provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1-



INTRODUCTION

Any test that was determined to contain an illegal language cunstruct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is
not used in testing a compiler. The tests withdrawn at the time of
validation are given in Appendix D.

N

-1--

..2 .7.

11~

So

.

.-

-1-6

- -. . - d.- , . . . . - .. " .,. -. ... ' . - - . . " . % % " . . . - ' .' ,, h , '." " .,.'-, .



CHAPTER 2

CONFIGURATION INFORMATION

CNFu':,kTION TESTED

"nc candi(-a > ompilation system for this vi.idation was tested under the
following configuration:

Compiler: VAda-010-03315, Version 5.5

ACVC Version: 1.8

Certificate Number: 870615W1.08087

".ic r (omputer:

Machine: MicroVAX II

Operating System: MicroVMS, Version 4.4

Memory Size: 11 megabytes

Target Computer:

Machine: iSBC 386/20P Intel using
file-server support from the host

* Operating System: None

Memory Size: 2 megabytes

Communications Network: Ethernet

2-1

~%
0'M



77. - -7- -77 -7""-rr . . -

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
i compiler in those areas of the Ada Standard that permit implementations

16
L o differ. Class D and E tests specifically check for such implementation
"ifferences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
inorpretations of the Ada Standard:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tets), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An 'mplementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
impit-mentation does not reject such calculations and processes
them correctly. (See tests D4A0O2A, D4A002B, D4AO04A, and
D4AO04B.)

Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORTFLOAT, and TINY INTEGER in the package
STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a

value exceeding SYSTEM.MAXINT during compilation, or it may raise
NUMERICERROR or CONSTRAINTERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

N.. ..
%. 4% X ~ ~ ~ ~ -



CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAS
components raises NUMERIC ERROR when the array subtype is
dec-ared. (See test C52104Y.)

A null array with onp dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declareA or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array

* slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

-In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety

*before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

DurLng compilation, an implementation is allowed to either accept

or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression
appears to be evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is

- . compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
* bound in a nonnull range of a nonnull aggregate does not belong to

an index subtype. (See test E43211B.)

2-3

"0'



CONFIGURATION INFORMATION

Functions.

An implementation may allow the declaration of a parameterless

functi-n and an enumeration liter3l having the same profile in the

same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

2epresentation zIaijes.

The Ada Standard does not require an implementation to support

representation clauses. If a representation clause is not

supported, then the implementation must reject it. While the

operation of representation clauses is not checked by Version 1.8

)f -he ACVC, they are used in testing other language features.
uis implemenLation accepts 'SIZE and 'STORAGE SIZE for tasks,

'STORAGE SIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B62A,

C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma INLINE

is supported for functions. (See tests CA3OO4E and CA3004F.)

Input/output.

The package SEQUENTIAL_10 can be instantiated with unconstrained

array types and record types with discriminants. The package
DIRECT_10 can be instantiated with unconstrained array types and

record types with discriminants without defaults. (See tests

AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)
I

An existing text file can be opened in OUTFILE mode, can be
created in OUT -FILE mode, and can be created in INFILE mode.
(See test EE3102C.)L" More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests).)

More than one internal file can be associated with each external

file for sequential I/O for reading only. (See tests CE2107A..F
(6 tests).)

More than ne internal file can be associated with each external

file for direct I/O for reading only. (See tests CE2107A..F (6

tests).)

4 2-4

• ..*. . . . . . - - - • ' ' "%



CONFIGURATION INFORMATION

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
"J qe~arate compilations. (See tests CA2009C and BC3205D.)

.1.

2-5

S

4 %

ALA-U40 %



CHAPTER 3

TEST INFORMATION

3.1 'rEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

VAda-O10-03315 was performed, 19 tests had been withdrawn. The remaining

* 2380 test3 were potentially applicable to this validation. The AVF

determined that 189 tests were inapplicable to this implementation, and

that the 2191 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

___._ A B C D E L

Passed 69 865 1181 17 13 46 2191

S Failed 0 0 0 0 0 0 0

Inapplicable 0 2 187 0 0 0 189

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

."

a.%

3-1

......



TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 139 261 130 32 218 221 2191

Faiied 0 0 0 0 0 0 0 0 0 0 0 0 0

lnp i j cable 14 73 36 3 0 0 0 1 0 0 0 12 189

Withd'awn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTA'L 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of

this validation:

C32114A C41404A B74101B

B33203C B45116A C87B50A
C34018A C48008A C92005A

C35904A B49006A C940ACA
B37401A B4AO10C CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

*. 3.5 INAPPLICABLE TESTS

*" Some tests do not apply to all compilers because they make use of features

6 that a compiler is not required by the Ada Standard to support. Others may

depend on the result of another test that is either inapplicable or

- witihdrawn. The applicability of a test to an implementation is considered

each time a validation is attempted. A test that is inapplicable for one

validation is not necessarily inapplicable for a subsequent attempt. For
this validation attempt, 189 tests were inapplicable for the reasons

6 indicated:

. C34001E, B52004D, B55B09C, and C55BO7A use LONGINTEGER which is

not supported by this compiler.

C34001G and C35702B use LONGFLOAT which is not supported by this

compiler.

P.

%" 3-2

,,. -. * 6 --. "..- , "..'



TEST INFORMATION

C96005B cheeks implementations for which the smallest and largest
values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

CE2107B..E (4 tests), CE2110B, CE2111D, C92111H, CE3111B..E (4
.r J. tests), and CE3114B are inapplicable because the same file cannot

be shared for reading and writing. The proper exception is raised
when multiple access is attempted.

"".he foilowing 170 tests require a floating-point accuracy that

exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
, C35706L..Y (14 tests) C35707L..Y (14 tests)

C35708L..Y (14 tests) C35802L..Y (14 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45424L..Y (14 tests)
C45521L..Z (15 tests) C45621L..Z (15 tests)0

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors

.1 are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

P' Splits were required for 19 Class B tests:

* B24204A B37201A B67001B
B24204B B38008A B67001C
B24204C B41202A B67001D
B2AOO3A B44001A B91003B
B2AO03B B64001A B95001A
B2AO03C B67001A B97102A

6. B33301A

I..

3.7 ADDITIONAL TESTING INFORMATION

0

3-3

0%
L•  %P ,: : ., 2A, , ., , . , . . . . ._. . . ... . , . . , " , ._ . ' ' .. , . * , , ,



' 'TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8, produced
by the VAda-010-03315, was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

Tesi;, Method

.e ~'r,,of the VAda-010-03315 using ACVC Version 1.8 was conducted on-site
by the vilidation team from the AVF. The configuration consisted of a
MicroVAX II host operating under MicroVMS, Version 4.4, and an iSBC 386/20P
Intel target with no operating system. The host and target computers were
linked via Ethernet.

Aap containing all tests except for withdrawn tests and tests requiring
unsupported floating-point precisions was taken on-site by the validation
team for processing. Tests that make use of implementation-specific values
were customized before being written to the tape. Tests requiring splits
during the prevalidation testing were included in their split form on the
tape.

The contenLs of the magnetic tape were loaded onto a Sun 3 computer. After
modifying the test name extensions to make them compatible with the system

. naming conventions, the test sources were copied into the test area on the
* MicroVAX II machine with FTP (file transfer protocol) over a network system

implement.i.ng standard IP on Ethernet.

After the test files were loaded to disk, the full set of tests was

compiled and linked on the MicroVAX II, and all executable tests were run
on the iSBC 386/20P. Results were transferred back to the MicroVAX II and
routed to the network printer.

The REPOR' oackage was modified to use SIMPLE_10, a simplified version of
' TEXTIO, for all tests except those in Chapter 14. The implementation of

SIMPLE IO uses a division of TEXT 10 developed by Verdix for previous
validations performed from VMS to cross-target bare machines. In this
cross-target implementation, the functions of TEXT 10 are logically and
physically divided into two portions which run on both the host and the
target. 1/0 file system requests are handled by the portion running on the

O. host; output formatting is handled by the portion running on the target.
Both portions are written in Ada. For the most part this implementation is

. completely transparent to the user, except that certain default file
characteristics will be determined by the host operating system. A
protocol has been developed to allow the target processor to make requests
of the host file system by means of a daemon on the host. Any host on

, which the daenon if7 implemented can serve as the file 3,'stem server for the
target crocessor; thus thi.3 underlyinF implementation of TEXT_ C -s

_nr P.ncent of the host operating system.

.. , 3-4

*



- .jj !%PWVN"% t6V

TEST INFORMATION

Tests were compiled, linked, and executed (as appropriate) using a single

host computer and a single target computer. Test output, compilation

listings, and Job logs were captured on tape and archived at the AVF. The

listings examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation was conducted at Verdix Corporation Western Operations,

M"Am: OR from 12 June 1987 through 19 June 1987.

.. 3

N. ° 'A . _A-I

-p..•

'• p

S.

po.°

'w'..3-5

0'



-

p(-.

APPENDi, A

COMPL L ANCE STATEMENT

Verdix Corporation has submitted the following

declaration of conformance concerning the
VAIa-01 0-03315.

FO

A-1

S%

* -* .' .-_ * - 5 -



DECLARAT:ON OF CONFORMANCE

:_= Lceen'tcr: Verc'x rpatc
AcaoJ' V1Lal-atcn Fac2>L'-ty: AS/CIL Wr!,Snt-?azterccn AFS,
Aca Ccz:.iler Valaatin Cacalty (AC',C) Verzizn: 1 .3

Base Confi4guxat-4on

Base Compiler Name: VAda-O1O-03315 Version: 5.141
Host Architecture ISA: MicroVAX II OS&VER #: MicroVMS, Version 14.14
Target Architecture ISA: iSBC 386/20P Intel using

file-ser'ver support from the host
J ~ (bare mnachine)

Imp lementoor '3 Declaration

;nduersign,_-d, represen~ting Vercax Corporat~on, have implemente,- n
d"el~tera e extenz.u or.3 to the Ada Language Stancara A1S1/ML-ST:-',S5A L

:-.e 1o:.e l.sted In thi4s dec..arati4on. I declare that Veraix Corprz_ i..
io -,-e _wner of recort of the Ada language compiler li stea above ant, az
s1n. respors4_tle for mai~nta.nirng said com::c4er in conformance to

A ::ML-8 15A. All cert-f cates and registrations for Ada languagze
ccn:erzted in this3 declaration shall' be made onl! n the owner's

cor:cra? , 'aze.

Date:____________

M--nael Sevfi ., M4an'aer, Ada ?1:-X

Ownler's Declarat-'on

-,tz nc ersigned, repr e..ntng Verdlx Corprcati'on, taxe full
r ~yfor iJ-_leetcicn anc, ma-ntena-nce of the Ada complier

Late~zazove, anti agree to the publicJ disclosure of the fial Valia ti
:-zary Report. I furtner agree to continue to ccmply with the Ada

tra(-e=-r.z policy, as defined ty the Ada joint Program Office. I declare
a- of the Ada langua-e comp--ers li4sted, anc their nesttarget

* er:'zr~ance are In cz. ance wltn the Ada '.arg-uage Stantara

::ate: 6/ 5 7

3 r-(t~ z- -l-

(Aa aOn ?r'o~aran C; aez ren!

A-_ '-Q%7



APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on

representation classes. The implementation-dependent characteristics of
the VAda-010-03315, Version 5.5, are described in the following sections

which discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-1815A). Implementation-specific portions of the package

STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147 _483_648 .. 2_147_483_647;
type SHORT INTEGER is range -32768 • 32_767;

' type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type SHORTFLOAT is digits 6 range -3.4028E+38 .. 3.4028E+38;

type DURATION is delta 6.103515625E-05
range -131072.00000 .. 131071.99993;

end STANDARD;

B-i

-"v , .--.,- . -. -o * , W~o.Ay,, Vo.,'
". *S.P '. W U1 O



ATTACHMENT II

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. SHAREBODY Pragma

The SHARE BODY pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiation, or overloaded instantiations.

* If the second argument is TRUE the compiler will try to share code generated for a generic instantia-
bon with code generated for other instantiations of the same generic. Whcn the second argument is
FALSE each instantiation will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

1.2. EXTERNALNAME Pragma
The EXTERNAL NAME pragma takes the name of a subprogram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

1.3. INTERFACEOBJECT Pragma

The INTERFACE OBJECT pragma takes the name of a P variable defined in another language and
allows it to be referenced directly in Ada. The pragma will replace all occurrences of the variable
name with an external reference to the second, link argument. The pragma is allowed at the place of a
declarative item in a package specification and must apply to an object declared earlier in the same
package specification. The object must be declared as a scalar or an access type. The object cannot be

* any of the following:
a loop variable,
a constant,
an initialized variable,
an array, or
a record.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

".. This pragma is recognized by the implementation but has no effect.

S2.2. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

O, B-2



2.3. INLINE
This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE
This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and the result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. An optional third argument overrides the default link
name. All parameters must have mode IN. Record and array objects can be passed by reference using

wthe ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORYSIZE

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

2.8. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. Com-
ponents that are smaller than a STORAGEUNIT are packed into a number of bits that is a power of
two. level.

* .2.9. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.10. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.11. SHARED

This pragma is recognized by the implementation but has no effect.

2.12. STORAGE UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
0t modified by means of pragmas, the SYSTEM package must be recompiled.

2.13. SUPPRESS
This pragma is implemented as described, except that RANGECHECK and DIVISIONCHECK can-
not be supressed.

2.14. SYSTEMNAME
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

NONE.

B-3
O.,



.

4. Specification Of Package SYSTEM
paIkage SYSTEM

type NAME ia 3 86

SYSTEM NAME constant NAME 1386;

NtORAGE UNIT con, sa t : Ia ;

-,• ) R Y IZE co, l a :a a5 711 216;

Sy,!e.I-Deperdent Named Numbers

I I
*  

: 0o a I t a -2_141 483 64 :

',L% X ~T Q onI an az 2_147_43_647;
A .tr S c 0n It aant S

" A '- ANT I S S k on a s :- 3 1

N A constant t * -30);
Sc onuat a.t . O1

a t- . . Sy mtem-d apendent Dcci arat ioas

a ,-/ PRIORITY is INTEGER range 0 . 99;

.. X _ SIZE u tnte r . . 64"1 02.4;

.Ipt ADDRESS i private;

0o ADOR costant ADDRESS;

function PHYSICALADDRESS(I: INTEGER) return ADDRESS;

funcl-n ADDROGT(A, B: ADDRESS) retarn BOOLEAN;
function ADDRLT(A. 3: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;

* function ADDRLE(A. B: ADDRESS) return BOOLEAN;

function ADDRDIFF(A, 3: ADDRESS) return INTEGER;
function INCR-ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR-ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

function >'(A, 8: ADDRESS) return BOOLEAN renames ADDR GT;
function <'(A, B: ADDRESS) return BOOLEAN renames ADDR-LT;
fnaction ->. (A. 9: ADDRESS) return BOOLEAN renames ADDR GE;
faunction *<. (A, 8: ADDRESS) return BOOLEAN renames ADDR-LE;
function -(A, B: ADDRESS) retain INTEGER itzamna ADDR _DIPV
runctiin .'(A: ADDRESS; INCR: INTEGER) return ADDRESS renames INCR ADDR;

fanctioa *.(A: ADDRESS; DECR: INTEGER) ratern ADDRESS rename@ DECR-ADDR:

p. , pr aim& i ] a I ; (AkDDRGT);
pralm, iat :. (ADDR_LT);

pra ma io lI (ADDR E);
pr a gma t a (ADDR-LE);

pralma inline(ADDRDIPP)

pTrumgin ine ( INCRADDR);

prea i ntinc(DECRADDR);

pragma inline(PHYSICALADDRESS);

type ADDRESS is new integer;

NOADDR constant ADDRESS :- 0;

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

Array and record components that are smaller than a STORAGEUNIT are packed into a number of
bits that is a power of two. Objects and larger components are packed to the nearest whole
STORAGEUNIT.

5.2. Size Specification
The size specification T'SMALL is not supported except when the representation specfication given is
the same as 'SMALL for the base type.

5.3. Record Representation Clauses

Components not aligned on even STORAGEUNIT boundaries may not span more than four
STORAGEUNITs.

B-4

"C~~" ha -A ha - *Vhe



5.4. Address Clauses

Address clauses are not supported.

535. Interrupts

fer;,ijpr, 3re not supported.

A. - uatioa Attributes

.ra AT'D [FS z ,irbute is not suppoted for the following entities:
i:'.-:" ?ack, '

Cask,

Fnt

5.7. Machine Code Insertions

Machine code insertions are supported.

6. Conventions for Implementation-generated Names
There are no implementation-generated narnes.

7. Interpretation of Expressions in Address Clauses

Address clauses are not supported.

8. Restricons on Unchecked Conversions

The preckfirAd generic function UNCHECKED_CONVERSION casinot be instantiated with a target
type which is an unconstrained array type or an unconstrained record type with discriminants.

9. Implementation Characteristics of 1/0 Packages

Instantiaions of DIRECT 10 use the value MAX REC SIZE as the record size (expressed in
STORAGEUNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays buch as string where ELEMENT _ TYPE'SIZE is very large, MAXRECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT_10 to provide an upper limit on the record size. In any case the maximum size

*:. supported is 1024 x 1024 x STORAGEUNIT bits. DIRECT 10 will raise USE ERROR if
MAXRECSIZE exceeds this absolute limiL

" .Instaniations of SEQUENTIAL_10 use the value MAXRECSIZE as the record size (expressed in
.- 1 FORAGE UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-

strained arrays such as string where ELEMENTTYPE'SIZE is very large, MAX RECSIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTEGER I1 to provide an upper limit on the record size. SEQUENTIAL 10 imposes no
limit on MAX REC SIZE.

10. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
*. resources up to or even near these limits are available to every program.

B-5



10.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

10.2. Record and Array Sizes

The maximum size of a statically sized andy type is 4,000,000 x STORAGE UNITS. The maximum
size of a statically sired record type is 4,000,000 x STORAGEUNITS \ rmcord type or array type
leclaration that exceeds these limits will generate a wainilg message.

i. 3 . DelW. Stack Size e.," Tgasks

fn tl, h, of an explic 't STORAG:- -SIZE le-pecification :very task except the mwin programn
s a1!c.:ai 4 a fixed size stack of 10,240 STORAGE UNITS. This is the value returned by
T'IO:,(AC, E S17E for a task type T.

10.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length attribute the default collection size for an access
type is 100,000 STORAGEUNITS. This is the value returned by T'STORAGE_SIZE for an access
type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for objects declared statically within a
compilation unit. If this value is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

,p.-

% % %

C,.
.. "4.* ,.% " % " . " , ' . % • % . • . . % % .



APPENDXC(

TEST PARAMETERS

C:ertain tes, , in the ACVC make use of implementation-dependent values, such

* as the maximum length of an input line and invalid file names. A test that
* makes use of such values is identified by the extension .TST in its file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names

be')r, the test is run. The values used for this validation are given
* belcw.

*Name and Meaning Value

4 $BIG_ID1 (1-.498 => 'A', 499 => '1')

Identifier the size of the
maximum input line length with
varying last character.

$BIG_1D2 (l..498 => 'A', 499 => '2')

Identifier the size of the
maximum input line length with
varying last character.

$BIG_1D3 (1-.249 => 'A', 250 => '3', 251..499 => 'A')

Identifier the size of the
maximum input line length with
varying middle character.

$BIG_1DN (l..249 => 'A', 250 => 'L4', 2 5 1..J 499 :>'A')

Identifier the size of the
maximum input line length with
varying middle character.

$BIGINT_-LIT (1-.496 => '0', 497-.499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

["

%c%

'L wA



TEST PARAMETERS

Name and Meaning Value

$BIGREALLIT (1..493 => '0', 494..499 => "69.OE1")
A real literal that can be
either of floating- or fixed-

point type, has value 69n.0, and
has enougn ieading zeroes to be

the size of the maximum line
length.

¢"" I (1--479 => ''

.- , of blanks ,wenty
-1,,aracters fewer than the size

ol the maximum line length.

,."-$COUNT LAST 2 147 483 647

A universal integer literal
whose ', lue is TEXT IO.COUNT'LAST.

$EXTENDEDASCIICHARS "abcdefghijklmnopqrstuvwxyzI$%?@[\]
" {}-"

A string literal containing all
the ASCII characters with

printable graphics that are not
in the basic 55 Ada character

set.

$FIEL .LAST 2_147_483_647
V A universal integer literal
, whose value is TEXTIO.FIELD'LAST.

$F. ,_NAME_WITT _ADCHARS "/illegal/filename/2 ]$%2102C.DAT"
An illegal external file name
that either contains invalid

characters, or is too long if no

invalid characters exist.

$FILENAMEWITHWILDCARDCHAR "/illegal/file name/CE2102C*.DAT"

An external file name that
, either contains a wild card

character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 100_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER _THAN DURATIONBASELAST 10_000_000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

C-2

'p"



TEST PARAMETERS

Name and Meaning Value

$ILLEGAL EXTERNALFILENAME1 "/no/such/directory/ILLEGALEXTERNAL FILENAMEI
An ii'legal external file name.

57'.',EGAL EXTE:;NAL FILE NAME2 "/no/sci.h/directory/ILLEGAL EXTERNAL FILE NAME2"

An illegal external file name
ti, t is different t'rom
t T T LEGAL-XTERNALFILENAMEl

tINt;GE?, Fi ,S7 1141 463_6148
rsal .±.ger literal

.: 93 on whose value is

SNTE j*:1 ' L RST.

$INTEGER LAST 2_147_483_647

rhe universal integer literal
"-*xpression whose value is

INTEGER' LAST.

$LESSTHANDURATION -100_000.0

A universal real value that lies
between DURATION'BASE'FIRST and

DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LE3S rijANDURATIONBASEFIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST,

if such a value exists.

$MAXDIGITS 15

The universal integer literal
whose value is the maximum

digits supported for
floating-point types.

$MAX IN LEN 499
The universal integer literal

whose value is the maximum
input line length permitted by
the implementation.

S."

$MAXINT 2_ 147_483_647

The universal integer literal
whose value is SYSTEM.MAX INT.

•"S

S.
5C'.

I0; C-3



I-.

-TEST PARAMETERS

Name and Meaning Value

$NAME TINY INTEGER

A name of a predefined numeric
type other thar, FLOAT, INTEGER,

SHORTFLOAT, SHORT INTEGER,
LONG_FLOAT, or LONGINTEGER

if one exists, otherwise any
indefined name.

hA SED INT 16#FFFFFFFD#
A based integer lite ral whose
highest order nonzero bit

falls in the sign bit
position of the representation

for SYSTEM.MAX INT.

$NONASCIICHARTYPE (NONNULL)
An enumerated type definition
for a character type whose

literals are the identifier
NON NULL and all non-ASCII

characters with printable
graphics.

C

• C-

I,.



-% . _ r j r. a- - r . .- a. -- - - - - W b. ,V l W h k; -o - U i.~ *' % - - J

APPENDIX D

WITHDRAWN TESTS

Somre tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Comm~entary.

*C3211J4A: An unterminated string literal occurs at line 62.

* . B33203C: The reserved word "IS" is misspelled at line 115.

*C3J4O18A: The call of function G at line 1.14 is ambiguous i~n the
- presence of implicit conversions.

* - . C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

.B37
2401A: The object declarations at lines 126 through 135 follow

subprogram bodies declared in the same declarative part.

*C414OLA: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

*B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of
* the wrong type--PRIBOOLTYPE instead of ARRPRIBOOLTYPE--at line
* - 41.

- . C48008A: The assumption that evaluation of default initial values
* occurs when an exception is raised by an allocator is incorrect
* according to AI-00397.

*B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

*B4AO1OC: The object declaration in line 18 follows a subprogram
body of the same declarative part.

[ -.

JD

, '..,A P N I D

-

--. "AI-ddddd" is to an Ada Commentary.

%o %
• C32114A: An unterA.2aed trigltra cusatln 2



-K TV

WITHDRAWN TESTS

".. B74101B: The begin at line 9 causes a declarative part to be

treated as a sequence of statements.

i" .' C87B50A: The call of "/" at line 31 requires a use clause for

* -package A.

, C923005A: The "/=" for type PACK.BIG INT at line 40 is not visible

w:tnout a use clause for the package PACK.

* .i C940ACA: The assumption that allocated task TT will run prior to

- the nain program, and thus assign SPYNUMB the value checked for by

- tne main program, is erroneous.

:A3005A..D (4 tests): No valid elaboration order exists for tnese

tests.

* BC3204C: The body of BC3204C0 is missing.

=o."

A.i

D-2

IONS

* .. ' .D-2... **..***~**..



0 4
'-4,ji 

I ~ , o % N


